Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 123, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229404

RESUMO

There is a growing interest in perfusion or continuous processes to achieve higher productivity of biopharmaceuticals in mammalian cell culture, specifically Chinese hamster ovary (CHO) cells, towards advanced biomanufacturing. These intensified bioprocesses highly require concentrated feed media in order to counteract their dilution effects. However, designing such condensed media formulation poses several challenges, particularly regarding the stability and solubility of specific amino acids. To address the difficulty and complexity in relevant media development, the biopharmaceutical industry has recently suggested forming dipeptides by combining one from problematic amino acids with selected pairs to compensate for limitations. In this study, we combined one of the lead amino acids, L-tyrosine, which is known for its poor solubility in water due to its aromatic ring and hydroxyl group, with glycine as the partner, thus forming glycyl-L-tyrosine (GY) dipeptide. Subsequently, we investigated the utilization of GY dipeptide during fed-batch cultures of IgG-producing CHO cells, by changing its concentrations (0.125 × , 0.25 × , 0.5 × , 1.0 × , and 2.0 ×). Multivariate statistical analysis of culture profiles was then conducted to identify and correlate the most significant nutrients with the production, followed by in silico model-guided analysis to systematically evaluate their effects on the culture performance, and elucidate metabolic states and cellular behaviors. As such, it allowed us to explain how the cells can more efficiently utilize GY dipeptide with respect to the balance of cofactor regeneration and energy distribution for the required biomass and protein synthesis. For example, our analysis results uncovered specific amino acids (Asn and Gln) and the 0.5 × GY dipeptide in the feed medium synergistically alleviated the metabolic bottleneck, resulting in enhanced IgG titer and productivity. In the validation experiments, we tested and observed that lower levels of Asn and Gln led to decreased secretion of toxic metabolites, enhanced longevity, and elevated specific cell growth and titer. KEY POINTS: • Explored the optimal Tyr dipeptide for the enhanced CHO cell culture performance • Systematically analyzed effects of dipeptide media by model-guided approach • Uncovered synergistic metabolic utilization of amino acids with dipeptide.


Assuntos
Aminoácidos , Técnicas de Cultura Celular por Lotes , Cricetinae , Animais , Cricetulus , Células CHO , Meios de Cultura/química , Técnicas de Cultura Celular por Lotes/métodos , Aminoácidos/metabolismo , Tirosina , Dipeptídeos , Imunoglobulina G , Simulação por Computador
2.
Biotechnol J ; 18(12): e2300126, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605365

RESUMO

Designing and selecting cell culture media along with their feeding are a key strategy to maximize culture performance in biopharmaceutical processes. However, the sensitivity of mammalian cells to their culture environment necessitates specific nutritional requirements for their growth and the production of high-quality proteins such as antibodies, depending on the cell lines and operational conditions employed. In this regard, previously we developed a data-driven and in-silico model-guided systematic framework to investigate the effect of growth media on Chinese hamster ovary (CHO) cell culture performance, allowing us to design and reformulate basal media. To expand our exploration for media development research, we evaluated two chemically defined feed media, A and B, using a monoclonal antibody-producing CHO-K1 cell line in ambr15 bioreactor runs. We observed a significant impact of the feed media on various aspects of cell culture, including growth, longevity, viability, productivity, and the production of toxic metabolites. Specifically, the concentrated feed A was inadequate in sustaining prolonged cell culture and achieving high titers when compared to feed B. Within our framework, we systematically investigated the major metabolic bottlenecks in the tricarboxylic acid cycle and relevant amino acid transferase reactions. This analysis identified target components that play a crucial role in alleviating bottlenecks and designing highly productive cell cultures, specifically the addition of glutamate to feed A and asparagine to feed B. Based on our findings, we reformulated the feeds by adjusting the amounts of the targeted amino acids and successfully validated the effectiveness of the strategy in promoting cell growth, life span, and/or titer.


Assuntos
Anticorpos Monoclonais , Técnicas de Cultura de Células , Cricetinae , Animais , Cricetulus , Células CHO , Aminoácidos/metabolismo , Meios de Cultura/química
3.
Biosens Bioelectron ; 177: 112980, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33450614

RESUMO

The unique profile of upregulated glycosylation in metastatic cancer cells may form the basis for the development of new biomarkers for the targeting and diagnosis of specific cancers. This study introduces a pancreatic cancer cell-derived exosome detection technology, which is based on the specific binding of lectins to distinctive glycan profiles on the surface of exosomes. Lectins with a high and specific affinity for sialic acid or fucose were attached to bifunctional Janus nanoparticles (JNPs), which facilitated interactions with pancreatic cancer cell-derived exosomes in a microfluidic device. Here, we show that pancreatic cancer cell-derived exosomes from two cell lines and plasma samples collected from patients diagnosed with pancreatic cancer were successfully captured on the lectin-conjugated JNPs with affinities that were comparable to those of CA19-9, a conventional antibody. In addition, exosome detection using our platform could differentiate between metastatic and nonmetastatic pancreatic cancer cells. This study opens the possibility to achieve a new early diagnosis marker based on the glycan properties of pancreatic cancer cell-derived exosomes.


Assuntos
Técnicas Biossensoriais , Exossomos , Nanopartículas , Neoplasias Pancreáticas , Humanos , Lectinas , Neoplasias Pancreáticas/diagnóstico , Polissacarídeos
4.
Acta Biomater ; 90: 179-191, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936036

RESUMO

Although there are numerous medical applications to recover damaged skin tissue, scarless wound healing is being extensively investigated to provide a better therapeutic outcome. The exogenous delivery of therapeutic growth factors (GFs) is one of the engineering strategies for skin regeneration. This study presents an exogenous GF delivery platform developed using coacervates (Coa), a tertiary complex of poly(ethylene argininyl aspartate diglyceride) (PEAD) polycation, heparin, and cargo GFs (i.e., transforming growth factor beta 3 (TGF-ß3) and interleukin 10 (IL-10)). Coa encompasses the advantage of high biocompatibility, facile preparation, protection of cargo GFs, and sustained GF release. We therefore speculated that coacervate-mediated dual delivery of TGF-ß3/IL-10 would exhibit synergistic effects for the reduction of scar formation during physiological wound healing. Our results indicate that the exogenous administration of dual GF via Coa enhances the proliferation and migration of skin-related cells. Gene expression profiles using RT-PCR revealed up-regulation of ECM formation at early stage of wound healing and down-regulation of scar-related genes at later stages. Furthermore, direct injection of the dual GF Coa into the edges of damaged skin in a rat skin wound defect model demonstrated accelerated wound closure and skin regeneration after 3 weeks. Histological evaluation and immunohistochemical staining also revealed enhanced formation of the epidermal layer along with facilitated angiogenesis following dual GF Coa delivery. Based on these results, we conclude that polycation-mediated Coa fabrication and exogenous dual GF delivery via the Coa platform effectively augments both the quantity and quality of regenerated skin tissues without scar formation. STATEMENT OF SIGNIFICANCE: This study was conducted to develop a simple administration platform for scarless skin regeneration using polycation-based coacervates with dual GFs. Both in vitro and in vivo studies were performed to confirm the therapeutic efficacy of this platform toward scarless wound healing. Our results demonstrate that the platform developed by us enhances the proliferation and migration of skin-related cells. Sequential modulation in various gene expression profiles suggests a balanced collagen-remodeling process by dual GFs. Furthermore, in vivo histological evaluation demonstrates that our technique enhances clear epidermis formation with less scab and thicker woven structure of collagen bundle, similar to that of a normal tissue. We propose that simple administration of dual GFs with Coa has the potential to be applied as a clinical approach for fundamental scarless skin regeneration.


Assuntos
Cicatriz/prevenção & controle , Derme/metabolismo , Sistemas de Liberação de Medicamentos , Fibroblastos/metabolismo , Interleucina-10 , Fator de Crescimento Transformador beta3 , Cicatrização/efeitos dos fármacos , Cicatriz/metabolismo , Cicatriz/patologia , Derme/patologia , Fibroblastos/patologia , Humanos , Interleucina-10/química , Interleucina-10/farmacocinética , Interleucina-10/farmacologia , Fator de Crescimento Transformador beta3/química , Fator de Crescimento Transformador beta3/farmacocinética , Fator de Crescimento Transformador beta3/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...